Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts.

نویسندگان

  • J M Gomez
  • A Jimenez
  • E Olmos
  • F Sevilla
چکیده

The present work describes the intrachloroplast localization and the changes that took place in the thylakoid and stroma-located superoxide dismutases (SOD, EC 1.15.1.1) and ascorbate peroxidases (APX, EC 1.11.1.11), in response to long-term NaCl stress in Pisum sativum L. cv. Puget plants. Native PAGE using high chloroplast protein concentrations pointed to the presence of the two main Fe-SODs, together with CuZn-SODs, both in thylakoids and in the stroma. Western blot and immunogold labelling using the antibodies against chloroplastic Fe-SOD from Nuphar luteum also confirmed the chloroplastic localization of a Fe-SOD. Thylakoidal Fe-SOD activity was induced by a NaCl concentration as low as 70 mM, while CuZn-SOD was induced at 90 mM, although in severe stress conditions (110 mM) both activities were similar to the levels at 90 mM NaCl. NaCl stress also induced stromatic Fe-SOD and CuZn-SOD activities, although these inductions only started at higher NaCl concentration (90 mM) and were significant at 110 mM NaCl. The increase in activity of both Fe-SODs was matched by an increase in Fe-SOD protein. Chloroplastic APX isoenzymes behaved differently in thylakoids and stroma in response to NaCl. A significant increase of stromal APX occurred at 70 mM, whereas the thylakoidal APX activity was significantly and progressively lost in response to NaCl stress (70-110 mM). A significant increase in the H2O2 content of chloroplasts during stress and a reduction in the ascorbate level at 90 mM NaCl also took place, although the oxidized ascorbate pool at the highest NaCl concentration did not show significant changes. These results suggest that the loss of thylakoidal APX may be an important factor in the increase in chloroplastic H2O2, which also results from the increased thylakoid and stroma-located Fe-SOD and CuZn-SOD activities. This H2O2 may be involved in the induction of stromal APX. The up-regulation of the above enzymes in the described stress conditions would contribute to the adaptation of cv. Puget plants to moderate NaCl stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antioxidant systems and O(2)(.-)/H(2)O(2) production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins.

The present work describes, for the first time, the changes that take place in the leaf apoplastic antioxidant defenses in response to NaCl stress in two pea (Pisum sativum) cultivars (cv Lincoln and cv Puget) showing different degrees of sensitivity to high NaCl concentrations. The results showed that only superoxide dismutase, and probably dehydroascorbate reductase (DHAR), were present in th...

متن کامل

Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress

The possible involvement of activated oxygen species in the mechanism of damage by NaClstress was studied in leaves of two varieties of pea (Pisum sativum L.) cv. EC 33866 and Puget. Thelevel of lipid peroxidation, enzyme activity of superoxide dismutase (SOD, EC 1.15.1.1), ascorbateperoxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), dihydroascorbate reductase(DHAR, 1.8.5.1)...

متن کامل

Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants.

In this work the influence of the nodulation of pea (Pisum sativum L.) plants on the oxidative metabolism of different leaf organelles from young and senescent plants was studied. Chloroplasts, mitochondria, and peroxisomes were purified from leaves of nitrate-fed and Rhizobium leguminosarum-nodulated pea plants at two developmental stages (young and senescent plants). In these cell organelles,...

متن کامل

Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.

A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against...

متن کامل

Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress' lnduction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants

Photosynthesis of leaf discs from transgenic tobacco plants (Nicotiana tabacum) that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD+) was protected from oxidative stress caused by exposure to high light intensity and low temperature. Under the same conditions, leaf discs of plants that did not express the pea SOD isoform (SOD-) had substantially lower...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 394  شماره 

صفحات  -

تاریخ انتشار 2004